伍，路線運量分析及預測

5.1 需求模式架構說明

本計畫之運輸需求預測模式採「程序性總體運輸需求模式」架構，包含旅次發生（Trip Generation），旅次分布（Trip Distribution），運具分配 （Mode Split），及交通量指派（Traffic Assignment）等模組，架構如圖 5．1－1所示。分析方法上，各模組採用之方法整理如表 5．1－1 所示。

圖 5．1－1 運輸需求預測模式架構

模組	項目	分析方法	引入變數
旅次發生	旅次產生	類目分析法：依家户所得及車輛持有劃分	交通分區人口數交通分區家户數家户平均所得旅次目的別之旅次產生率交通分區學校學生人口數
	旅次吸引	迴歸分析法	家工作採二，三級產業人口數家其他採三級產業人口數非家採三級產業人口數家就學採及學人口數
旅次分布		重力模式 阻 抗 係 數 函 數 採 Gamma 函數	旅次產生量 旅次吸引量 旅行成本 阻抗係數函數参數
運具分配		個體羅吉特模式	各旅次目的旅次分布（PA）矩陣大眾運輸旅行成本／時間私人運輸旅行成本／時間效用函數參數
交通量指派	私人運具	多車種均衡指派法公車預置於路網	公路路網速率流量曲線關係私人運具旅次起迄矩陣
	大眾運具	最短路徑指派法	大眾運輸路網 大眾運輸旅次起迄矩陣

本計畫運輸需求模式主要參數假設説明如下：

—，平均時間㑯值

時間價值即每單位旅行時間所能换算的貨幣價値，主要是作為計算一般化成本的依據。而使用者在評估其時間價值時，較在乎其旅行時間節省所需付出的代價占工資的比率。因此本計畫平均時間價值之預測，係根據薪資所得作為計算用路人時間價值之基礎，並以下列步驟計算得出平均時間價値為每小時 96.3 元。計算使用者每小時平均新資：

1．估算各旅次目的之時間價値。
2．依據家訪調查資料之旅次目的組成分析。

3．加權各旅次目的時間價値與組成比例獲得平均時間價値。

二，車輛行車成本

根據車輛行車成本係假設包括機車，汽車及營業大客車的燃油 （汽油），油料保養費，輪胎，維修，清洗，駕駛薪資等成本。其中，燃油費用年成長率為 1% ，駕駛薪資以經濟成長因子調整，同時每一乘客每車公里的平均考量旅行速度，車輛乘載率與車種組成等影響進行預測。
根據交通部運研所民國99年的「行車成本調查分析交通建設計畫經濟效益評估之推廣應用－99」 報告建議，本計畫將包括機車，汽車及營業大客車三類，並將行車成本劃分為燃料成本與非燃料成本。燃油成本決定於車速與燃油消耗的替換關係；非燃油成本則包括車輛的附屬油料，輪胎耗損，維修保養，行駛里程與相關折舊費用。

三，大眾路網費率設定

臺中都會區現有大眾運具如上所述，而各大眾運具之費率公式設定説明如后：

1．市區公車
市區公車之收費方式為一票到底（基本里程數為 8 公里），其基本票價為 20 元，其費率公式為：

市區公車費率 $=20, ~ D \leqq 8$
市區公車費率 $=20+2.5515 \times(\mathrm{D}-8), ~ \mathrm{D}>8$
D：行駛公里數
2．公路客運
公車客運之收費方式為一票到底（基本里程數為8公里），其基本票價為 26 元，其費率公式為：
公車客運費率 $=26, ~ D \leqq 8$
公車客運費率 $=26+3.221 \times(\mathrm{D}-8), \mathrm{D}>8$
D：行駛公里數
3．國道客運
國道客運之收費方式為一票到底， 150 公里以下為 1.788元， 150 公里以上則為 1.5204 元，其費率公式為：
未滿 150 公里的國道客運費率 $=1.788 \times(\mathrm{D})$
150 公里以上的國道客運費率 $=1.5204 \times(\mathrm{D})$

D：行駛公里數

4．臷路（短程＿區間車）

臺䟈之短程客運服務包含復興號及區間車，其收費方式為一票到底（基本里程數為 10 公里），基本票價為 15 元，其費率公式為：

臺钱（短程）費率 $=15, \mathrm{D} \leqq 10$
臺钱（短程）費率 $=15+1.46 \times(\mathrm{D}-10), \mathrm{D}>10$
D：行駛公里數

5．鐵路（長程＿對號車）

臺鏙之長程客運服務包含莒光號及自強號，本計畫採用自強號之費率，其收費方式為一票到底（基本里程數為 10 公里），基本票價為 23 元，其費率公式為：
臺裁（長程）費率 $=23, ~ D \leqq 10$
臺臷（長程）費率 $=23+2.27 \times(\mathrm{D}-10), ~ \mathrm{D}>10$
D：行駛公里数
6．捷運
本計畫採用堂北捷運及高雄捷運之收費方式，設定呈中捷運之收費方式為一票到底（基本里程數為5公里），基本票價為 20 元，其費率公式為：
捷運費率 $=20, ~ D \leqq 5$
捷運費率 $=20+2.5 \times(D-5), ~ D>5$
D：行駛公里數
7．高臷
臺灣高鐵收費方式為一票到底，採里程計費，其費率公式為：
高瀻費率 $=4.386 \times(\mathrm{D}), \mathrm{D}>0$
D：行駛公里數

5.2 需求模式調整與更新

5．2．1 旅次發生模組

影響旅次發生之因素主要為人口，就業，所得及車輛持有狀況等社經資料，本計畫沿用 87 年細部規劃之旅次產生與吸引率關係式，並以

社經資料更新與旅次總量校核的方式調整各交通分區旅次產生數，搭配周界及屏柵線交通量調查，檢核界内各分區間旅次與界外旅次資料。旅次發生模組中，旅次產生率的推估係採用類目分析法與線性迴歸分析法合併處理，而旅次吸引率是以線性迴歸分析法推估，旅次產生流程及旅次吸引流程如圖 5．2－1 與圖 5．2－2 所示。

圖 5．2－1 旅次發生模組作業流程（旅次產生）

圖 5．2－2 旅次發生模組作業流程（旅次吸引）
臺中都會區各旅次目的全日旅次發生預測結果彙整如表 5．2－1 所示，由表中結果顯示，基年（民國 100 年）臺中都會區全日總旅次數約為 677.3 萬人次，平均旅次產生率約為 1.71 次；目標年 130 年全日總旅次數約為 830.1 萬人次，平均旅次產生率約為 2.0 次。
在旅次產生吸引分布方面，從圖 5．2－3～5．2－4 可發現，臺中都會區基年旅次產生數多集中在各行政區聚落密集，工商活動頻繁之處，基年旅次吸引數則以分布在特殊旅次吸引點為主；未來年臺中都會區隨著相關重大開發建設計畫陸續引進，各年期旅次產生吸引數亦會隨之成長，就目標年130年而言，其旅次吸引數將更集中在有重大開發建設計畫之處，如水湳經貿生態園區（現名為「大宅門特區」），大肚山科技走廊，彰濱工業區等。

表 5．2－1 各旅次目的全日旅次發生預測結果

年期 （民國）	項目	家工作	家學校	家其他	非家	合計
100年	旅次數（萬人次／日）	291.01	117.65	185.69	82.91	677.26
	旅次目的比率	42．97\％	17．37\％	27．42\％	12．24\％	100．00\％
	平均旅次率	1.59	1.46	0.47	0.21	1.71
114 年	旅次數（萬人次／日）	345.12	108.77	219.93	103.13	774.95
	旅次目的比率	44．53\％	13．91\％	28．25\％	13．31\％	100．00\％
	平均旅次率	1.69	1.55	0.53	0.25	1.87
120 年	旅次數（萬人次／日）	358.03	107.08	232.37	111.16	808.64
	旅次目的比率	44．28\％	13．24\％	28．74\％	13．75\％	100．00\％
	平均旅次率	1.73	1.58	0.56	0.27	1.94
130 年	旅次數（萬人次／日）	364.53	101.50	244.71	119.31	830.05
	旅次目的比率	43．92\％	12．23\％	29．48\％	14．37\％	100．00\％
	平均旅次率	1.75	1.60	0.59	0.29	2.00

註：旅次率單位：家工作為次／每就業人口，家就學為次／每就學人口，家其他及非家為次／每人。資料來源：本計畫預測整理。

圖 5．2－3 臺中都會區基年旅次產生吸引分布圖

圖 5．2－4 臺中都會區目標年旅次產生吸引分布圖

5．2．2 旅次分布模組

旅次分布在瞭解研究範圍交通分區產生之旅次在各交通分區間之空間分布型態。本計畫應用重力模式進行旅次分布分析，旅次目的分為家工作（HBW），家學校（HBE），家其他（HBO）及非家旅次（NHB）等 4 類。臺中都會區界内交通分區多達 320 個，不易描述整體旅次分布之型態，為利於説明遂將交通分區依地理位置合併成 11 個區域，再依此合併分區䱊整基年與目標年民國130年之旅次分布預測結果，如表 5．2－2～3 與圖 5．2－5～6 所示。

就基年旅次分布而言，由表 5．2－2 中結果顯示，臺中都會區全日旅次約 677.3 萬人次／日，區域間旅次活動量以臺中市核心區與臺中市南部屯區最高，其次為臺中市核心區與臺中市西山線地區。
就目標年旅次分布而言，由表 5．2－3 中結果顯示，臺中都會區全日旅次約 830.1 萬人次／日，其旅次分布型態與基年相似，區域間旅次活動量仍以臺中市核心區往來臺中市南部屯區與臺中市西山線地區等區域較為頻繁。

另從圖 5．2－5 與圖 5．2－6 可發現，不論基年或目標年，臺中都會區旅次活動均以臺中市核心區為中心且呈輻射狀發展，發展走廊主要分布在臺中市核心區往臺中市西山線地區，臺中市南部屯區，臺中市西海線地區，彰化市，彰化縣員林田中地區等區域，此分布情形亦顯示出臺中都會區之旅次活動分布已由臺中市核心區逐漸擴展至其周邊衛星市鎮及彰化縣鄰近鄉鎮市。

表 5．2－2 臺中都會區基年（民國 100 年）全日旅次起迄分布表
單位：人旅次／日

大分區	臺中市 核心區	臺中市 東山線	臺中市 西海線	臺中市 南部屯區	臺中市 西山線	臺中市 西北海線	彰化縣 彰化市	彰化縣 花壇芬園	彰化縣 鹿港和美	彰化縣 員林田中	南投縣 南投草屯

註：1．臺中市核心區係指原臺中市 8 個行政區；2．臺中市東山線地區係指臺中市東勢區，新社區，石岡區，和平區等行政區；3．臺中市西海線地區係指臺中市清水區，沙鹿區，龍井區，大肚區，梧棲區等行政區；4．臺中市南部屯區係指臺中市烏日區，大里區，太平區，霧峰區等行政區；5．臺中市西山線地區係指臺中市豊原區，后里區，潭子區，神岡區，大雅區等行政區；6．臺中市西北海線地區係指臺中市大安區，大甲區，外埔區等行政區；7．彰化市係指彰化縣彰化市；8．彰化縣花壇芬園地區係指花壇鄉，芬園鄉，大村鄉等行政區；9．彰化縣鹿港和美地區係指彰化縣鹿港鎮，秀水鎮，福興鄉，和美鎮，線西鄉，伸港鄉，埔鹽鄉等行政區；10．彰化縣員林田中地區係指彰化縣員林鎮，溪湖鎮，永靖鄉，埔心鄉，田中鎮，北斗鎮，社頭鄉，田尾鎮等行政區；11．南投縣南投草屯地區係指南投縣草屯鎮和南投市等行政區。
資料來源：本計畫預測整理。

表 5．2－3 臺中都會區目標年（民國 130 年）全日旅次起迄分布表

大分區	臺中市 核心區	臺中市 東山線	臺中市 西海線	臺中市 南部屯區	臺中市 西山線	臺中市 西北海線	彰化縣 彰化市	彰化縣 花壇芬園	彰化縣 鹿港和美	彰化縣 員林田中	南投縣 南投草屯

註：1．臺中市核心區係指原臺中市 8 個行政區；2．臺中市東山線地區係指臺中市東勢區，新社區，石岡區，和平區等行政區；3．臺中市西海線地區係指臺中市清水區，沙鹿區，龍井區，大肚區，梧棲區等行政區；4．臺中市南部屯區係指臺中市鳥日區，大里區，太平區，霧峰區等行政區；5．臺中市西山線地區係指臺中市豊原區，后里區，潭子區，神岡區，大雅區等行政區；6．臺中市西北海線地區係指臺中市大安區，大甲區，外埔區等行政區；7．彰化市係指彰化縣彰化市；8．彰化縣花壇芬園地區係指花壇鄉，芬園鄉，大村鄉等行政區；9．彰化縣鹿港和美地區係指彰化縣鹿港鎮，秀水鎮，福興鄉，和美鎮，線西鄉，伸港鄉，埔鹽鄉等行政區；10．彰化縣員林田中地區係指彰化縣員林鎮，溪湖鎮，永靖鄉，埔心鄉，田中鎮，北斗鎮，社頭鄉，田尾鎮等行政區；11．南投縣南投草屯地區係指南投縣草屯鎮和南投市等行政區。
資料來源：本計畫預測整理。

圖 5．2－5 臺中都會區基年全日旅次起迄分布示意圖

圖 5．2－6 臺中都會區目標年全日旅次起迄分布示意圖

5．2．3 運具分配模組

運具分配模組為分析兩地間旅次選擇何種運輸工具完成其活動目的需要。基年各運具別之旅次起迄矩陣必須由調查獲得，校估效用函數所需之個人旅行成本資料（包括：車内／車外時間，行車成本，票價，停車費，步行時間等）與使用運具別可由運具選擇之敘述性偏好問卷調查取得。運具分配模組作業流程如圖 5．2－8 所示。

圖 5．2－7 臺中都會區運具分配模組作業流程圖

一，連輸政策假設

未來年臺中都會區引入捷運系統後，為能有效提升捷運運量，除既有公車路網需配合捷運路線調整外，同時亦需透過各項運輸政策之積極作為來達成，如捷運接駁公車班次加密，公車捷運轉乘票價優惠，汽機車收費提高，機車退出騎樓等政策，以下將分別針對各運具施予不同運輸政策假設進行情境模擬（如表 5．2－4），説明如后所述：
（一）捷運接駁公車班次加密
未來年臺中都會區引入捷運系統後，捷運接駁公車班次將配合捷運營運時間加密，假設平均班距為 $6 \sim 10$ 分鐘。
（二）公車捷運轉乘票價優惠
大眾運具轉乘優惠方面，假設未來年大眾旅客於公車系統與捷運系統間相互轉乘者，可享票價雙向轉乘優惠 10 元。
（三）私人運具管制策略
在私人運具方面，假設目標年130年核心市區（原臺中市）汽車停車收費提高為每小時 70 元，收費比例為 70% ，機車停車則配合捷運通車，假設捷運沿線機車全面退出騎樓，採計次收費，每次 40 元，收費比例為 70% ；而非核心市區之汽機車停車費則同現況收費方式（不收費）。另在油價方面，參考近十年無鉛汽油之油價與其成長趨勢，假設每年
油價調整率為 2.5% 。

表 5．2－4 各年期運輸政策假設情境一覽表

項目	作法	年期情境假設		
		114年	120年	130年
公車	捷運接駁公車班次加密	班距 6－10 分	班距 6－10 分	班距 6－10 分
大眾運輸	公車捷運搭乘	隻向優惠\＄10	雙向優惠\＄ 10	隻向優惠\＄ 10
汽車	停車費率／收費比率	40 元／hr（50\％）	50 元／hr（60\％）	70 元／hr（60\％）
機車	停車費率／收費比率	20 元／次（40\％）	30 元／次（50\％）	40 元／次（50\％）
	退出騎樓	捷運沿線	捷運沿線	捷運沿線
汽機車	油價調整率	2．5\％	2．5\％	2．5\％

ニ，運具分配預測結果

依上所述之運輸政策假設情境進行臺中都會區運輸需求預測，未來年各年期運具分配預測結果彙整如表 5．2－5 所示。由此表可以看出隨著逐年交通管制措施之增加，私人運具市占率逐年降低，大眾運輸市占率逐年增加，至目標年民國130年，大眾運輸市占率可達 17.3% ，為基年（民國 100 年）市占率 8.2% 的兩倍。另從表中結果可知，目標年大眾運輸運量多來自小汽車旅次之轉移。

表 5．2－5 各年期運具運量與市占率對照表

運具	114 年		120 年		130 年	
	運量 （萬人次）	使用率	運量 （萬人次）	使用率	運量 （萬人次）	使用率
機車	447.29	57．72\％	464.24	57．41\％	472.80	56．96\％
小汽車	227.81	29．40\％	229.65	28．40\％	213.90	25．77\％
大眾運輸	99.85	12．88\％	114.75	14．19\％	143.35	17．27\％
合計	774.95	100．00\％	808.64	100．00\％	830.05	100．00\％

資料來源：本計畫預測整理。

5．2．4 交通量指派模組

交通量指派即將運具分配模組產生之結果指派到臺中都會區道路路網上。本計畫依各運具行車成本及時間價値建立一般化成本，以成本最小化作為路徑指派之原則。

目標年民國130年引進捷運橘線前後之主要道路交通量預測値與其道路服務水準變化，預測結果彙整如表 5．2－6 所示。由表中結果顯示，目標年130年臺中都會區引進捷運橘線後，將會有部分私人運具旅次轉移至捷運橘線，造成該路廊尖峰小時之主要道路交通量減少，道路服務水準因而有所提升，服務水準均在 D 級以上。

表 5．2－6 民國 130 年有無捷運橘線之主要道路交通量預測結果表

路段別	方向	道路容量 （PCU／時）	無捷運橘線計畵			有捷運橘線計畵		
			尖峰小時流量 （PCU／時）	V／C	服務水準	尖峰小時流量 （PCU／時）	V／C	服務水準
中清路	往南	2，400	2，463	1.03	E	2，366	0.99	D
（環中路～黎明路）	往北	2，400	1，803	0.75	D	1，758	0.73	C
中清路	往南	2，400	2，458	1.02	E	2，331	0.97	D
（黎明路～文心路）	往北	2，400	2，417	1.01	E	2，250	0.94	D
大雅路	往南	2，400	1，941	0.81	D	1，873	0.78	D
（文心路～進化北路）	往北	2，400	1，816	0.76	D	1，754	0.73	C
進化北路	往東	2，400	1，605	0.67	C	1，468	0.61	B
（大雅路～崇德路）	往西	2，400	1，380	0.57	B	1，265	0.53	B
崇德路	往南	2，400	1，634	0.68	C	1，535	0.64	B
（進化北路～五權路）	往北	2，400	1，609	0.67	C	1，588	0.66	C
三民路	往南	2，000	1，309	0.65	C	1，211	0.61	B
（崇德路～育才北路）	往北	2，000	1，300	0.65	C	1，113	0.56	B
三民路	往南	2，000	1，347	0.67	C	1，270	0.64	B
（育才北路～育才街）	往北	2，000	1，357	0.68	C	1，189	0.59	B
三民路	往南	2，100	2，072	0.99	D	1，921	0.91	D
（育才路～公園路）	往北	2，100	1，890	0.90	D	1，782	0.85	D
雙十路	往南	3，600	1，336	0.37	A	1，322	0.37	A
（自由路～南京路）	往北	3，600	1，060	0.29	A	1，056	0.29	A
國光路	往南	2，600	1，661	0.64	B	1，520	0.58	B
（建國路～興大路）	往北	2，600	1，541	0.59	B	1，559	0.60	B
國光路	往南	2，600	1，549	0.60	B	1，299	0.50	A
（興大路～忠明路）	往北	2，600	1，933	0.74	C	1，790	0.69	C
國光路	往南	3，000	2，864	0.95	D	2，590	0.86	D
（忠明路～大里橋）	往北	3，000	2，001	0.67	C	1，716	0.57	B
中興路	往南	2，400	2，337	0.97	D	2，085	0.87	D
（大里橋～林森路）	往北	2，400	1，806	0.75	D	1，735	0.72	C
林森路	往南	2，400	1，460	0.61	B	1，446	0.60	B
（中正路以南）	往北	2，400	1，224	0.51	B	1，015	0.42	A

資料來源：本計畫預測整理。

5.3 運量預測與分析

5．3．1 情境假設

捷運運量預測立基於運輸需求理論，故需透過運輸需求模式進行推估，而運輸需求模式是由數學方程式所組成，可用來描述社會經濟，運輸成本及管理策略等不同情境組合之選擇行為與運具活動規模，因此，「運量預測可説是情境假設的分析結果」。
影響捷運運量之變數，可歸納為人口，旅次發生量，運輸政策與路網結構等四大部分，由於以往捷運運量預測假設情境多是以人口，運輸政策與路網結構等變數為主要分析對象，鮮少針對旅次發生量進行探討，故本計畫假設人口，運輸政策與路網結構等變數條件相同下，進一步針對旅次發生量進行情境假設，共分為基礎，TOD 與保守等三個情境。其中，基礎情境係以平均每人每日旅次率為2．0次／日為分析基礎；TOD 情境係假設未來年配合捷運系統於捷運車站周圍劃定 TOD 發展區，捷運沿線人口可增加 10% ，及業人口增加 20% ；保守情境則是參考臺北模式 TRTS－IV 民國98年家訪調查結果，發現臺北都會區旅次率發展趨勢未若預期，較以往經驗低（98 年旅次率為 1．86，130 年為 2．06），故本計畫假設此情境之平均每人每日旅次率會較基礎情境低，有關各假設情境之一覽表如表5．3－1 所示。

表 5．3－1 臺中都會區捷運橘線運量預測情境假設一覽表

	項目	保守情境	基礎情境	TOD 情境
旅次發生量	土地開發假設	依䞶勢自然成長並納入核定開發計畫	依䞶勢自然成長並納入核定開發計畫	1．依趨勢自然成長並納入核定開發計畫 2．假設捷運車站周圍劃定 TOD 發展區，捷運沿線人口增加 10% ，及業人口增加 20\％
	旅次率（次／人／日）	1.86	2.00	2.00
	活動人口	未來年各年期居住人口，及業人口，及學人口等預測總量不變		
	路網結構	臺擮捷運紅線，捷運緑線（至彰化市），捷運藍線（至臺中港）與捷運橘線等路線均已通車		
	運輸政策	各情境於未來年各年期之運輸政策相同（詳表4．2－13）		

5．3．2 路線運量分析

依上所述之假設情境進行捷運橘線運量預測，結果彙整如表 5．3－2 所示。

一，全日

捷運橘線於預測營運起始年民國114年時，各情境全日運量約 10．2～12．0萬人次，目標年130年約15．3～18．5萬人次，約為114年運量之 $1.45 \sim 1.55$ 倍；在最大站間運量方面，各情境單向最大站間運量均發生於臺中火車站（O9／B9 站）與國光路／復興路口（O10站）間，114 年全日最大站間運量約 3．1～3．6萬人次／日，130年約 4．7～5．5 萬人次／日。

二，尖峰

捷運橘線民國114年各情境尖峰運量約1．7～2．0萬人次，目標年 130 年約 $2.6 \sim 3.2$ 萬人次，約為 114 年運量之 $1.5 \sim 1.6$ 倍；在最大站間運量方面，各情境之最大站間運量亦皆發生在 O9／B9 站與 O10 站間，114年尖峰小時最大站間運量為4，922～5，962人次／時， 130 年為 7，840～9，370 人次／時。

表 5．3－2 臺中都會區捷運橘線各年期路線運量預測結果表

$\begin{gathered} \text { 年期 } \\ \text { (民國) } \end{gathered}$	情境	路線運量		單向最大站間量		
		$\begin{gathered} \text { 全日 } \\ \text { (人次/日) } \end{gathered}$	$\begin{gathered} \text { 尖峰 } \\ \text { (人次/時) } \end{gathered}$	區間	$\begin{gathered} \text { 全日 } \\ \text { (人次/日) } \end{gathered}$	$\begin{gathered} \text { 尖峰 } \\ \text { (人次/時) } \end{gathered}$
114年	保守情境	102，474	16，820	O9／B9－O10	30，866	4，922
	基碟情境	112，356	18，634	O9／B9－O10	33，856	5，490
	TOD 情境	120，236	20，320	O9／B9－O10	36，400	5，962
120 年	保守情境	122，010	20，210	O9／B9－O10	35，990	5，600
	基碟情境	136，560	22，870	O9／B9－O10	40，480	6，540
	TOD 情境	145，850	24，880	O9／B9－O10	43，870	7，120
130 年	保守情境	153，390	25，830	O9／B9－O10	47，090	7，840
	基礎情境	164，650	28，110	O9／B9－O10	49，750	8，550
	TOD 情境	185，280	32，270	O9／B9－O10	54，820	9，370

資料來源：本計畫預測整理。

5．3．3 目標年車站上下車量分析

目標年民國130年臺中都會區捷運橘線各情境全日與尖峰小時之車站上下量彙整如表 5．3－3～5．3－5 所示，説明如下：

一，全日

目標年130年捷運橘線各情境全日車站上下車量均以 O9／B9 站（可與捷運藍線 B9 站，臺鐵臺中火車站轉乘）為最高，全日上車量約 2．5～2．9 萬人次／日；其次為 O4／G7 站（可與捷運綠線 G7 站轉乘），全日上車量約 1．3～1．8 萬人次／日。

二，尖峰

目標年130年捷運橘線各情境尖峰車站上下車量仍以可與其他軌道系統轉乘之 O9／B9 站及 O4／G7 站較高，其中 O9／B9 站尖峰上車量約 7，570～8，740 人次／時，O4／G7 站約 4，310～5，820 人次／時。

表 5．3－3 民國130年捷運橘線各車站上下車量（保守情境）

車站			全日（人次／日）逆行		合計		尖峰小時（人次／時）							
	順行				順行	逆行		合計						
	上車	下車	上車	下車			上車	下車	上車	下車	上車	下車	上車	下車
O1	4，500	0	0	3，930	4，500	3，930	820	0	0	820	820	820		
O2	4，400	0	0	4，280	4，400	4，280	1，620	10	10	1，240	1，630	1，250		
O3	10，650	20	20	9，500	10，670	9，520	340	20	20	170	360	190		
O4／G7	6，900	7，080	6，570	7，150	13，470	14，230	3，220	1，280	1，090	2，750	4，310	4，030		
O5	3，810	650	1，300	4，590	5，110	5，240	190	970	940	180	1，130	1，150		
O6A	8，950	1，970	2，410	8，420	11，360	10，390	140	600	620	200	760	800		
07A	9，180	2，140	1，740	8，360	10，920	10，500	290	400	590	250	880	650		
08A	7，130	2，740	1，700	7，570	8，830	10，310	620	780	380	670	1，000	1，450		
O9／B9	15，950	9，780	9，160	15，180	25，110	24，960	6，220	1，560	1，350	5，630	7，570	7，190		
O 10	2，270	5，340	5，740	2，680	8，010	8，020	70	1，450	480	70	550	1，520		
011	920	4，870	3，410	780	4，330	5，650	40	500	730	30	770	530		
O 12	690	8，590	8，880	710	9，570	9，300	20	310	580	20	600	330		
O13	840	9，870	9，790	970	10，630	10，840	10	700	400	10	410	710		
O14	670	5，530	4，880	560	5，550	6，090	40	1，410	1，410	30	1，450	1，440		
O15A	590	8，280	8，800	630	9，390	8，910	50	1，040	840	50	890	1，090		
O16	320	4，600	4，850	310	5，170	4，910	10	1，110	1，000	10	1，010	1，120		
O17	0	6，310	6，370	0	6，370	6，310	0	1，560	1，690	0	1，690	1，560		
合計	77，770	77，770	75，620	75，620	153，390	153，390	13，700	13，700	12，130	12，130	25，830	25，830		

資料來源：本計畫預測整理。

表 5．3－4 民國130年捷運橘線各車站上下車量（基礎情境）

車站			全日（人次／日）逆行		合計		尖峰小時（人次／時）							
	順行				順行	逆行		合計						
	上車	下車	上車	下車			上車	下車	上車	下車	上車	下車	上車	下車
O1	4，940	0	0	4，380	4，940	4，380	830	0	0	830	830	830		
O2	4，890	0	0	4，760	4，890	4，760	1，700	10	10	1，320	1，710	1，330		
O3	11，590	20	20	10，280	11，610	10，300	350	20	20	170	370	190		
O4／G7	7，890	7，850	7，500	8，100	15，390	15，950	3，670	1，250	1，100	3，130	4，770	4，380		
O5	4，140	760	1，530	4，920	5，670	5，680	200	1，140	1，050	190	1，250	1，330		
06A	9，540	2，090	2，420	8，700	11，960	10，790	130	680	670	130	800	810		
07A	10，280	2，260	1，870	9，480	12，150	11，740	530	450	520	230	1，050	680		
08A	7，050	2，980	1，860	7，350	8，910	10，330	560	1，000	630	820	1，190	1，820		
O9／B9	15，750	10，360	9，540	16，120	25，290	26，480	6，630	1，500	1，360	6，240	7，990	7，740		
O10	2，470	6，050	5，560	2，970	8，030	9，020	70	1，490	510	70	580	1，560		
011	1，010	4，550	4，760	1，130	5，770	5，680	40	570	800	40	840	610		
012	770	8，530	8，890	790	9，660	9，320	20	350	650	20	670	370		
O13	940	10，910	10，870	1，070	11，810	11，980	10	720	470	10	480	730		
O14	730	5，790	5，170	620	5，900	6，410	30	1，490	1，580	20	1，610	1，510		
O15A	630	8，970	9，510	680	10，140	9，650	50	1，090	930	50	980	1，140		
O16	350	4，990	5，270	330	5，620	5，320	10	1，240	1，110	10	1，120	1，250		
O17	0	6，860	6，910	0	6，910	6，860	0	1，830	1，870	0	1，870	1，830		
合胡	82，970	82，970	81，680	81，680	164，650	164，650	14，830	14，830	13，280	13，280	28，110	28，110		

資料來源：本計畫預測整理。
表 5．3－5 民國130年捷運橘線各車站上下車量（TOD 情境）

車站			全日（人次／日）逆行		合計		尖峰小時（人次／時）							
	順行				順行	逆行		合計						
	上車	下車	上車	下車			上車	下車	上車	下車	上車	下車	上車	下車
O1	6，590	0	0	5，940	6，590	5，940	1，190	0	0	1，200	1，190	1，200		
O2	7，980	0	0	7，810	7，980	7，810	2，010	20	20	1，640	2，030	1，660		
O3	12，320	20	30	10，780	12，350	10，800	410	20	20	210	430	230		
O4／G7	8，580	10，250	9，840	8，540	18，420	18，790	4，330	1，690	1，490	3，710	5，820	5，400		
O5	4，690	870	1，680	5，500	6，370	6，370	240	1，300	1，210	220	1，450	1，520		
06A	9，730	2，200	2，600	8，670	12，330	10，870	140	830	720	140	860	970		
07A	9，880	2，630	2，290	9，490	12，170	12，120	570	530	720	260	1，290	790		
08A	8，360	3，600	2，130	8，790	10，490	12，390	750	1，270	780	950	1，530	2，220		
O9／B9	17，080	12，330	11，450	19，320	28，530	31，650	7，190	1，800	1，550	6，560	8，740	8，360		
O 10	2，810	6，200	5，860	3，540	8，670	9，740	90	1，510	570	90	660	1，600		
011	1，020	5，080	6，780	1，200	7，800	6，280	50	650	910	40	960	690		
O 12	680	9，570	10，010	700	10，690	10，270	20	410	700	20	720	430		
O13	960	11，250	11，400	1，090	12，360	12，340	10	740	490	10	500	750		
O14	680	6，010	$5,430$	590	6，110	6，600	50	1，810	1，780	40	1，830	1，850		
O15A	620	9，940	$10,640$	660	11，260	10，600	50	1，240	1，030	60	1，080	1，300		
O16	350	5，290	$5,650$	330	6，000	5，620	10	1，370	1，290	10	1，300	1，380		
$\mathrm{O} 17$	0	$7,090$	7，160	0	7，160	7，090	0	1，920	1，880	0	1，880	1，920		
合计	92，330	92，330	92，950	92，950	185，280	185，280	17，110	17，110	15，160	15，160	32，270	32，270		

資料來源：本計畫預測整理。

5．3．4 目標年站間運量分析

目標年民國130年捷運橘線各情境站間運量預測結果彙整如表 5．3－6所示。由表中結果可知，不論全日或尖峰小時，各情境之單向最大站間運量均發生在臺中火車站（O9／B9 站）與國光路／復興路口（O10 站）間，全日約 4．7～5．5 萬人次／日，尖峰約 7，840～9，370 人次／時。

表 5．3－6 民國130年捷運橘線各情境站間運量
單位：人次

區間		保守情境				基礎情境				TOD 情境			
		全日		尖峰小時		全日		尖峰小時		全日		尖峰小時	
		順行	逆行										
O1	O2	4，500	3，930	820	820	4，940	4，380	830	830	6，590	5，940	1，190	1，200
O2	O3	8，900	8，210	2，430	2，050	9，830	9，140	2，520	2，140	14，570	13，750	3，180	2，820
O3	O4／G7	19，530	17，690	2，750	2，200	21，400	19，400	2，850	2，290	26，870	24，500	3，570	3，010
O4／G7	O5	19，350	18，270	4，690	3，860	21，440	20，000	5，270	4，320	25，200	23，200	6，210	5，230
O5	O6A	22，510	21，560	3，910	3，100	24，820	23，390	4，330	3，460	29，020	27，020	5，150	4，240
O6A	07A	29，490	27，570	3，450	2，680	32，270	29，670	3，780	2，920	36，550	33，090	4，460	3，660
07A	O8A	36，530	34，190	3，340	2，340	40，290	37，280	3，860	2，630	43，800	40，290	4，500	3，200
O8A	09／B9	40，920	40，060	3，180	2，630	44，360	42，770	3，420	2，820	48，560	46，950	3，980	3，370
09／B9	010	47，090	46，080	7，840	$\mathbf{6 , 9 1 0}$	49，750	49，350	8，550	7，700	53，310	54，820	9，370	8，380
O10	O11	44，020	43，020	6，460	6，500	46，170	46，760	7，130	7，260	49，920	52，500	7，950	7，900
011	O 12	40，070	40，390	6，000	5，800	42，630	43，130	6，600	6，500	45，860	46，920	7，350	7，030
O 12	O 13	32，170	32，220	5，710	5，240	34，870	35，030	6，270	5，870	36，970	37，610	6，960	6，350
O 13	O14	23，140	23，400	5，020	4，850	24，900	25，230	5，560	5，410	26，680	27，300	6，230	5，870
O 14	O15A	18，280	19，080	3，650	3，470	19，840	20，680	4，100	3，850	21，350	22，460	4，470	4，130
O15A	O16A	10，590	10，910	2，660	2，680	11，500	11，850	3，060	2，970	12，030	12，480	3，280	3，160
O16A	O17	6，310	6，370	1，560	1，690	6，860	6，910	1，830	1，870	7，090	7，160	1，920	1，880

資料來源：本計畫預測整理。

5.4 運輸效益分析

本節將以基礎情境為主，針對臺中都會區捷運橘線於目標年民國130年產生之運輸效益進行分析與説明。

一，可及性分析

為了解臺中都會區捷運橘線通車後可带來之服務便利程度，本計畫進一步以可及性指標進行分析，分析方法係採目標年民國 130年捷運橘線車站方圆 500 公尺内（步行範圍）可服務之居住人口，二三級及業人口與及學人口等活動人口進行檢視，由表 4．5－1 中結果可知，捷運橘線沿線車站步行範圍内可服務之居住人口 17.2萬人，二三及業人口約 7.5 萬人，及學人口約 5.8 萬人，合計約 30.5 萬之活動人口，占整體捷運路網沿線活動人口之 16.0% 。

二，時間節省分析

由 5．2．3 節運具分配預測結果顯示，臺中都會區捷運橘線通車後，將會有部份私人運具旅次與原大眾運具旅次轉移至捷運橘線，造成整體路網之旅行時間因此有所節省。其中，在私人運具旅行時間節省方面，主要是因為部份私人運具旅次轉移至捷運橘線後，公路路網交通量隨之減少，進而使公路路網之行駛速度提高，縮短旅行時間所得之效益；而大眾運具旅行時間節省方面，則是因為捷運橘線通車後增加大眾路網之便捷性，致使原大眾運具使用者轉移至使用捷運所節省之旅行時間。

由表 5．5－1 中結果顯示，目標年 130 年臺中都會區捷運橘線通車後，在私人運具與大眾運具上均有全日旅行時間之節省，分別為 60,324 延人小時／日與 16,253 延人小時／日。

表 5．4－1 民國 130 年捷運橘線運輸效益彙整表（基礎情境）

運輸效益項目	衡量		民國130年效益値
可及性	居住人		171.98
	及業人口（千人）	二級業	10.36
		三級及業	65.41
	及學人口（千人）		57.58
	$\begin{gathered} \text { 活動人口合計(千人) } \\ \text { 私人運具節省時間(延人小時/日) } \\ \hline \end{gathered}$		305.32
時間節省			60，324
	大眾運具節省時間（延人小時／日）		16，253

[^0]
[^0]: 資料來源：本計畫預測整理。

